

# **Detector Support Group**

We choose to do these things "not because they are easy, but because they are hard". Weekly Report, 2022-04-06

# Summary

# <u>Hall A – ECal</u>

George Jacobs, Mindy Leffel, and Marc McMullen

- Assembling supermodules 45 of 59 complete
- Measured and sorted 27 lead-glass assemblies

## <u>Hall A – GEM</u>

Brian Eng, George Jacobs, and Marc McMullen

• Modifying gas flow and pressure monitoring system software to supply flow values to the Hall A plotting utility

## <u>Hall A – SoLID</u>

Mary Ann Antonioli, Pablo Campero, Mindy Leffel, and Marc McMullen

• Completed Solenoid Interlock Setup HMI screen and Phoebus screen

| Solenoid Interlock Setup                                                                                                                                                                                                                                                |                                                                                                                                                                                    | 2022-04-05 06:07:30 SoLID Solenoid Interlock Setup                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                  | Setup                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| 4/1/2022 SoLID - Solenoid Interlock Setup                                                                                                                                                                                                                               |                                                                                                                                                                                    | Magnet Temp                                                                                                                                                                                                                                                                                                                                     | eratures [K]                                                                                                                                                                                                                                                                                                                                                                        | Current leads mass flow and                                                                                                                                                                                                                      | i temperature                                                                              |
| Magnet Temperature   Max. Rd_Fe Temp 10.0, K   Max. PT102 Temp 175.0, K   Max. PT102 Cemp 175.0, K   Max. TD Temp. 1300, K   Max. TD Temp. 1320, K   Max. TD Temp. 1320, K                                                                                              | Current Leads Mass Flow & Temperature   Integration Time Flow Max. [55000] L / min   [99999] Ims Flow Min. [10.00] L / min   Flow Allowance [10.00] L / min CL Max Temp. [18.00] K | Max. Rd Fe<br>Max. PT102<br>Min. PT102<br>Max. PT102 colo<br>Max. temp. diode<br>Min. temp. diode                                                                                                                                                                                                                                               | <ha_solt<br><ha_solp<br><ha_solp<br><ha_soll<br><ha_soll<br><ha_solt<br><ha_solt< td=""><td>Integration time<br/>Max. flow<br/>Min. flow<br/>Flow allowance<br/>Current leads max. temp.</td><td>a sol:M<b>ms</b><br/>sol:ML/min<br/>a sol:TLL/min<br/>a sol:TLL/min<br/>a sol:mL/min</td></ha_solt<></ha_solt<br></ha_soll<br></ha_soll<br></ha_solp<br></ha_solp<br></ha_solt<br> | Integration time<br>Max. flow<br>Min. flow<br>Flow allowance<br>Current leads max. temp.                                                                                                                                                         | a sol:M <b>ms</b><br>sol:ML/min<br>a sol:TLL/min<br>a sol:TLL/min<br>a sol:mL/min          |
| Magnet Neck Temperature<br>Max. Temp He Supply Helium Pressure<br>Max. Temp He Supply Helium Leve<br>4.60 K   Max. Temp He Supply 4.60 K Max. Pressure 1.0000 Atm Level Max. [0.<br>10.000 Atm Level Max. [0.<br>10.000 Atm Level Min. [0.<br>10.000 Atm Level Min. [0. |                                                                                                                                                                                    | Magnet Neck Temperatures [K]<br>Max. temp. He supply <ha_sol.t,<br>Max. temp. He return <ha_sol.t< td=""><td colspan="2">Helium pressure [atm] Helium level [95]   Max. pressure <ha_solp_max. <ha_solh_<br="" level="">Min. pressure <ha_solp_min. <ha_solh_<="" level="" td=""></ha_solp_min.></ha_solp_max.></td></ha_sol.t<></ha_sol.t,<br> |                                                                                                                                                                                                                                                                                                                                                                                     | Helium pressure [atm] Helium level [95]   Max. pressure <ha_solp_max. <ha_solh_<br="" level="">Min. pressure <ha_solp_min. <ha_solh_<="" level="" td=""></ha_solp_min.></ha_solp_max.>                                                           |                                                                                            |
| Vacuum Pressure<br>Vacuum Limit (0.0100) Torr<br>Vacuum delay (3000) ms                                                                                                                                                                                                 | Nitrogen Pressure Nitrogen Level<br>Max. Pressure 25000 Atm Level Max 430.00 %<br>Min. Pressure 0.9500 Atm Level Min. 100.00 %                                                     | Vacuum F<br>Vacuum limit<br>Vacuum delay                                                                                                                                                                                                                                                                                                        | <pre>cha_sol:VETorr<br/><ha_sol:vetorr< pre=""></ha_sol:vetorr<></pre>                                                                                                                                                                                                                                                                                                              | Nitrogen pressure [atm] Nitr<br>Max. pressure <ha_sol:p_max.<br>Min. pressure <ha_sol:p_min. i<="" td=""><td>rogen level [%]<br/>level <ha_sol.h_<br>evel <ha_sol.h_< td=""></ha_sol.h_<></ha_sol.h_<br></td></ha_sol:p_min.></ha_sol:p_max.<br> | rogen level [%]<br>level <ha_sol.h_<br>evel <ha_sol.h_< td=""></ha_sol.h_<></ha_sol.h_<br> |
| Quench Max 5000 V CL Voltage Max. 0000 V   Quench Min. 5000 V CL Voltage Max. 0000 V   Quench Level2 Max. 0000 V Integration Time 200 ms   Quench Level2 Min. 0000 V Up Software Limit 0.060 V                                                                          |                                                                                                                                                                                    | Software quench detector [V]   Max, quench cha_sol/Q Max. current leads cha_sol/Q   Min, quench cha_sol/Q Min. current leads cha_sol/Q   Max, quench level 2 cha_sol/Q Quench detector software limit cha_sol/Q   Min, quench level 2 cha_sol/Q Integration time cha_sol/Q                                                                      |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                  |                                                                                            |

SoLID Solenoid Interlock Setup HMI screen (left) and Phoebus screen (right)

- Testing electric ball valve readout
  - ★ Voltage measured at valve terminal is -0.23 V when open and closed fully open valve should show 5 V and closed valve 0 V; debugging in progress
- Fabricated four, 4-conductor cables with CPC connectors
- Completed NX12 rendering of SoLID solenoid magnet



## Detector Support Group We choose to do these things "not because they are easy, but because they are hard". Weekly Report, 2022-04-06



VT\_1 (inner/outer coil junction at magnet rear)

SoLID magnet and turret rendering with voltage tap locations and flux loops

## <u>Hall B – RICH-II</u>

#### Mary Ann Antonioli, Peter Bonneau, Pablo Campero, Brian Eng, George Jacobs, Tyler Lemon, and Marc McMullen

- Connected EEL air-cooling and nitrogen setups' flow meters and pressure transducers to hardware interlock chassis
- Developed LabVIEW program for new compact CCD spectrometer (CCS) reflectivity test station
  - ★ Program measures mirror reflectivity for light of wavelengths from 450 800 nm
  - ★ When user runs program, it displays CCS data for reference light and light reflected off of mirror
  - ★ When user triggers a data capture, 50 measurements (quantity is user-settable), are recorded and averaged – averaging helps eliminate some of the noise at lower wavelengths
  - ★ Tested program by successfully measuring reflectivity of a mirror sample from ECI from RICH-I to be ~90% (sample has specified reflectivity of at least 90%)



# Detector Support Group We choose to do these things "not because they are easy, but because they are hard". Weekly Report, 2022-04-06



LabVIEW front panel of new reflectivity test station program using two CCSs. White waveform is CCS counts from reference light (data uses left y-axis). Red waveform is CCS counts from measurement light (data uses left (y-axis). Green waveform is calculated reflectivity of mirror sample (data uses right y-axis).

• Submitted cooling tube to JLab machine shop for modification

## Hall C – NPS

Mary Ann Antonioli, Peter Bonneau, Aaron Brown, Pablo Campero, Brian Eng, George Jacobs, Mindy Leffel, Tyler Lemon, and Marc McMullen

- Hardware interlock LabVIEW program development
  - \* Developed Python program to generate configuration file
  - ★ Wrote LabVIEW code to initialize high and low limits for all temperature, humidity, pressure, and flow variables
  - ★ Added Keysight scanning and averaging code
- Generated histogram of front crystal face temperatures using temperature probe data exported from Ansys steady-state thermal analysis



Histogram of front crystal face temperatures

3 DSG Weekly Report, 2022-04-06



Detector Support Group We choose to do these things "not because they are easy, but because they are hard". Weekly Report, 2022-04-06

# <u>Hall D – JEF</u>

Mary Ann Antonioli, Aaron Brown, George Jacobs, and Mindy Leffel

- FCAL foil pre-shaping (total of 608 foils)
- Wrapped 29 crystals with foil and Tedlar

## EIC

Pablo Campero, Brian Eng

- Conducting simulations in Ansys *Fluid Flow Fluent* to get the maximum temperature at the Si sensor layer 1
  - ★ Assumed air temperature in the annulus space and enclosed (ambient) of 20, 18, 16, 14°C
  - ★ For each temperature, air velocities of 0, 1,5, 8, 10 m/s were used for the ambient and annulus space



• Continued comparing Reference (CD1) and ECCE cost spreadsheets, with ATHENA as a sanity check – total costs are similar, but material/labor are far apart

## DSG R&D – EPICS Alarm System

<u>Peter Bonneau</u>

- Debugging the Kafka message stream for alarm system PV configuration settings
  - ★ Some of the configuration settings are not being accepted by the alarm server
  - Wrote a Kafka message stream spy program to aid in the debug of the configuration message stream – found errors in the format of the message stream
  - \* Successfully debugged PV configuration message stream
- Developing an Input/Output Controller (IOC) using EPICS base 3.14 to be used for the development and testing of the alarm system